dungeon/libs/glm/gtc/bitfield.inl

516 lines
16 KiB
Text
Raw Normal View History

2017-09-17 13:43:13 +02:00
/// @ref gtc_bitfield
/// @file glm/gtc/bitfield.inl
#include "../simd/integer.h"
namespace glm{
namespace detail
{
template <typename PARAM, typename RET>
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y);
template <typename PARAM, typename RET>
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z);
template <typename PARAM, typename RET>
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w);
template <>
GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y)
{
glm::uint16 REG1(x);
glm::uint16 REG2(y);
REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F);
REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F);
REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333);
REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333);
REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555);
REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555);
return REG1 | (REG2 << 1);
}
template <>
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y)
{
glm::uint32 REG1(x);
glm::uint32 REG2(y);
REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF);
REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF);
REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F);
REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F);
REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333);
REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333);
REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555);
REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555);
return REG1 | (REG2 << 1);
}
template <>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFFull);
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFFull);
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FFull);
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FFull);
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0Full);
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0Full);
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333ull);
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333ull);
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555ull);
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555ull);
return REG1 | (REG2 << 1);
}
template <>
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z)
{
glm::uint32 REG1(x);
glm::uint32 REG2(y);
glm::uint32 REG3(z);
REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF);
REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF);
REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF);
REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F);
REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F);
REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F);
REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3);
REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3);
REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3);
REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249);
REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249);
REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249);
return REG1 | (REG2 << 1) | (REG3 << 2);
}
template <>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);
REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull);
REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull);
REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull);
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull);
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull);
REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull);
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full);
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full);
REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full);
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull);
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull);
REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull);
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull);
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull);
REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull);
return REG1 | (REG2 << 1) | (REG3 << 2);
}
template <>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);
REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFFull);
REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFFull);
REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFFull);
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FFull);
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FFull);
REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FFull);
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00Full);
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00Full);
REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00Full);
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3ull);
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3ull);
REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3ull);
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249ull);
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249ull);
REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249ull);
return REG1 | (REG2 << 1) | (REG3 << 2);
}
template <>
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w)
{
glm::uint32 REG1(x);
glm::uint32 REG2(y);
glm::uint32 REG3(z);
glm::uint32 REG4(w);
REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F);
REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F);
REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F);
REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F);
REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303);
REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303);
REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303);
REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303);
REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111);
REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111);
REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111);
REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111);
return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
}
template <>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);
glm::uint64 REG4(w);
REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FFull);
REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FFull);
REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FFull);
REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FFull);
REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000Full);
REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000Full);
REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000Full);
REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000Full);
REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303ull);
REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303ull);
REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303ull);
REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303ull);
REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111ull);
REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111ull);
REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111ull);
REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111ull);
return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
}
}//namespace detail
template <typename genIUType>
GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'mask' accepts only integer values");
return Bits >= sizeof(genIUType) * 8 ? ~static_cast<genIUType>(0) : (static_cast<genIUType>(1) << Bits) - static_cast<genIUType>(1);
}
template <typename T, precision P, template <typename, precision> class vecIUType>
GLM_FUNC_QUALIFIER vecIUType<T, P> mask(vecIUType<T, P> const& v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'mask' accepts only integer values");
return detail::functor1<T, T, P, vecIUType>::call(mask, v);
}
template <typename genIType>
GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateRight' accepts only integer values");
int const BitSize = static_cast<genIType>(sizeof(genIType) * 8);
return (In << static_cast<genIType>(Shift)) | (In >> static_cast<genIType>(BitSize - Shift));
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateRight' accepts only integer values");
int const BitSize = static_cast<int>(sizeof(T) * 8);
return (In << static_cast<T>(Shift)) | (In >> static_cast<T>(BitSize - Shift));
}
template <typename genIType>
GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateLeft' accepts only integer values");
int const BitSize = static_cast<genIType>(sizeof(genIType) * 8);
return (In >> static_cast<genIType>(Shift)) | (In << static_cast<genIType>(BitSize - Shift));
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateLeft(vecType<T, P> const& In, int Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateLeft' accepts only integer values");
int const BitSize = static_cast<int>(sizeof(T) * 8);
return (In >> static_cast<T>(Shift)) | (In << static_cast<T>(BitSize - Shift));
}
template <typename genIUType>
GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount)
{
return Value | static_cast<genIUType>(mask(BitCount) << FirstBit);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillOne(vecType<T, P> const& Value, int FirstBit, int BitCount)
{
return Value | static_cast<T>(mask(BitCount) << FirstBit);
}
template <typename genIUType>
GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount)
{
return Value & static_cast<genIUType>(~(mask(BitCount) << FirstBit));
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillZero(vecType<T, P> const& Value, int FirstBit, int BitCount)
{
return Value & static_cast<T>(~(mask(BitCount) << FirstBit));
}
GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y;
union sign16
{
int16 i;
uint16 u;
} result;
sign_x.i = x;
sign_y.i = y;
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y)
{
return detail::bitfieldInterleave<uint8, uint16>(x, y);
}
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y;
union sign32
{
int32 i;
uint32 u;
} result;
sign_x.i = x;
sign_y.i = y;
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y)
{
return detail::bitfieldInterleave<uint16, uint32>(x, y);
}
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y)
{
union sign32
{
int32 i;
uint32 u;
} sign_x, sign_y;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y)
{
return detail::bitfieldInterleave<uint32, uint64>(x, y);
}
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y, sign_z;
union sign32
{
int32 i;
uint32 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z)
{
return detail::bitfieldInterleave<uint8, uint32>(x, y, z);
}
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y, sign_z;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z)
{
return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
}
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z)
{
union sign16
{
int32 i;
uint32 u;
} sign_x, sign_y, sign_z;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z)
{
return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
}
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y, sign_z, sign_w;
union sign32
{
int32 i;
uint32 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
sign_w.i = w;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w)
{
return detail::bitfieldInterleave<uint8, uint32>(x, y, z, w);
}
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y, sign_z, sign_w;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
sign_w.i = w;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w)
{
return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w);
}
}//namespace glm